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Abstract
We discuss the finite version of rigid motions in special relativity. Focusing
on the extension of the size of a rigid motion, we investigate the reflexive and
transitive properties of rigid motions. We show that rigid rotation of a three-
dimensional object is impossible while its rigid translation is possible. It is
shown that a two-dimensional plane can rotate rigidly.

PACS number: 03.30.+p

1. Introduction

Before the special theory of relativity was known, time was thought to be absolutely separated
from space and velocity of a particle was believed to have no upper bound. Hence, even the
velocity of transmission of a force signal was assumed to be infinite. This assumption makes
possible the notion of a rigid body, which plays an important role in classical physics. A
rigid body is defined as a collection of particles whose relative distances are constrained to
remain absolutely fixed. If we pull a particle in a rigid body, all the other particles should
react instantaneously in order to maintain the relative distances. This is possible only when
force signals are transmitted with an infinite velocity, which does not conflict with classical
physics.

By contrast, the special theory of relativity, which Albert Einstein established in 1905 [1],
does not allow the concept of a rigid body. According to this theory, not only the velocity of a
particle but also that of transmission of a force signal should not exceed the speed of light. If,
for example, we pull on one end of a straight rod which is 300 million meters long, it will take
at least one second for the other end to receive a force signal. The other end would not move
for one second, and the length of the rod cannot be fixed. This fact does not change, although
the mass of the rod is very small or the rod is formed tremendously firmly. As a result, the
concept of a rigid body may not exist in special relativity.

Nevertheless, there are reasons why we discuss rigidity. We are so much accustomed
to the concept of rigidity that it is natural to search for possibilities of holding the concept
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in a relativistic way. There have been several versions of relativistic rigid motion among
which Born’s definition is most popularly used [2–8]. His definition deals with infinitesimal
spatial length elements to accommodate general relativity. We consider here only special
relativistic rigid motions. A motion of a system of particles is defined to be a rigid motion if
the distance between any two particles in the system remains the same throughout the motion
when observed in an instantaneous rest inertial frame with respect to any one of the two
particles. Note here that distances are not Lorentz-invariant quantities. Therefore, when we
compare distances, we have to specify inertial frames to work on. By the definition, an object
at rest in an inertial frame is observed to move rigidly by a uniformly moving observer in spite
of the length contraction.

We emphasize here that an appropriate force should be given to each particle so that the
motion remains to be rigid. This is why we use ‘rigid motion’ rather than ‘rigid body’. A rigid
body would be an object which moves rigidly, as described above, regardless of the way forces
are applied, and we know such thing cannot exist owing to the finiteness of signal velocity.
The notion of rigid motion does not care about the finiteness of signal velocity.

Now the question is how far we can go with our definition of a rigid motion. In other
words, are there such motions at all? We will see that there exist such motions but not as
much as in classical physics. As in classical physics, we describe rigid motions by two types
of motions: a rigid translation and a rigid rotation. It turns out that a three-dimensional object
can undergo a one-dimensional rigid translation. However, as was predicted by Ehrenfest’s
paradox [9], a rigid rotation of a three-dimensional object is shown to be impossible. Therefore
rigid motions are very much restricted in special relativity.

In section 2, we discuss a one-dimensional rigid translation. Here we derive an equation
which governs the motion of each particle and introduce a hyperbolic rigid motion as an
example of a rigid translation. In section 3, we discuss a rigid rotation. Here we assume one
point particle is fixed while the other particles are rotating around the one. We derive a set
of equations for rigid rotations and discuss possibilities of rigid rotations. Finally, we give a
summary in conclusion.

2. Rigid translation in special relativity

2.1. Equation of rigid translation

In this section, we consider a one-dimensional translational motion. For simplicity we begin
with a motion of two particles. Initially, they are at rest. One(particle A) is at x0, and the
other (particle B) is at x0 − L0. The distance between the two particles is L0. Now, at t = 0,
the particle A begins to move by a given pattern xA = xA(t). What is the corresponding
motion of the particle B, xB = xB(t), which maintains the rigidity of our two particle system?
According to classical physics, the answer to this question would be xB(t) = xA(t) − L0, and
the velocities of two particles would satisfy ẋB(t) = ẋA(t). However, according to special
theory of relativity, the length of a moving object should be shorter by an observer at rest.

We now give a natural definition of a rigid motion from a special relativistic viewpoint.
A motion of a system of particles is defined to be a rigid motion if the distance between any
two particles in the system remains the same throughout the motion when observed in an
instantaneous rest inertial frame with respect to any one of the two particles. If we apply this
definition of a rigid motion to our one-dimensional rigid translation, the answer to the above
question is as follows. The motion of particle B should be in such a way that particle A must
be L0 ahead of particle B at any moment in an instantaneous rest frame of particle A. Let us
formulate this statement.
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Let frame O0 be the rest frame for both particles before they begin to move. Their motions
xA(t) and xB(t) are coordinatized in this frame. Let frame Ot be the instantaneous rest frame
with respect to particle A when time is t. When t = 0, frame O0 and frame Ot coincide.
Furthermore, the relative velocity of frame Ot with respect to frame O0 is ẋA(t). In frame Ot ,
particle A is instantaneously at rest. In this frame, particle B should be exactly −L0 from the
location of particle A at equal time in order to satisfy the definition of a rigid translation. By
Lorentz-transforming back to frame O0, we get the position of particle B in frame O0,(

ct

xA(t)

)
+

(
γA(t) γA(t)βA(t)

γA(t)βA(t) γA(t)

) (
0

−L0

)
=

(
ct − γA(t)βA(t)L0

xA(t) − γA(t)L0

)
(1)

where βA(t) = ẋA(t)

c
and γA(t) = 1√

1−β2
A(t)

. This forms the worldline of particle B, and xB(t)

must satisfy the following equation:

xB

(
t − γA(t)βA(t)L0

c

)
= xA(t) − γA(t)L0. (2)

This equation is the equation of rigid translation. In the derivation of this equation, we used
the fact that the distance between the two particles is L0 in an instantaneous rest frame with
respect to particle A. We also have to check that the distance between the two particles is
L0 in an instantaneous rest frame with respect to particle B. The corresponding equation is as
follows:

xA

(
t +

γB(t)βB(t)L0

c

)
= xB(t) + γB(t)L0. (3)

If this equation and (2) are compatible, we say that they satisfy the reflexive property.

2.2. Reflexive property and transitive property

From (2), we can find the velocity of particle B. Differentiating both sides of this equation
with respect to t, we get

d

dt

[
xB

(
t − γA(t)βA(t)L0

c

)]
= ẋA(t) − γ̇A(t)L0. (4)

The first term on the right-hand side is equal to cβA(t), and γ̇A(t) in the second term is

γ̇A(t) = γ 3
A(t)βA(t)β̇A(t). (5)

Hence, the right-hand side of (4) becomes

ẋA(t) − γ̇A(t)L0 = ẋA(t)

(
1 − γ 3

A(t)β̇A(t)L0

c

)
. (6)

Using the chain rule, the left-hand side of (4) becomes

d

dt

[
xB

(
t − γA(t)βA(t)L0

c

)]
=

(
1 − γ 3

A(t)β̇A(t)L0

c

)
ẋB

(
t − γA(t)βA(t)L0

c

)
. (7)

From (6) and (7), we get

ẋB

(
t − γA(t)βA(t)L0

c

)
= ẋA(t). (8)

This equation implies that particle B is also instantaneously at rest in an instantaneous
rest frame of particle A. Now, we are ready to prove the reflexive property. We assume (2) is
satisfied for all t. Let

t − γA(t)βA(t)L0

c
= τ
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then

t = τ +
γA(t)βA(t)L0

c

and (2) becomes

xB(τ) = xA

(
τ +

γA(t)βA(t)L0

c

)
− γA(t)L0. (9)

From (8), βA(t) = βB(τ) and γA(t) = γB(τ). Therefore, we get

xA

(
τ +

γB(τ)βB(τ)L0

c

)
= xB(τ) + γB(τ)L0 (10)

and this is the same as (3) with parameter t substituted by parameter τ .
We now consider the transitive property. Assume particle A and particle B are in a rigid

translation and particle B and particle C are also in a rigid translation. We have the following
relations:

xA

(
τ +

γB(τ)βB(τ)LAB

c

)
= xB(τ) + γB(τ)LAB (11)

xB

(
t +

γC(t)βC(t)LBC

c

)
= xC(t) + γC(t)LBC. (12)

The distance between particle A and particle B is denoted by LAB while the distance between
particle B and particle C is denoted by LBC . Note that these two equations are satisfied for
any t and τ .

We want to prove that the motion of particle A and particle C is a rigid translation. This
fact would be given by the following equation:

xA

(
t +

γC(t)βC(t)LAC

c

)
= xC(t) + γC(t)LAC. (13)

Here, LAC = LAB + LBC . To prove (13) we let τ = t + γC(t)βC(t)LBC

c
in (12). Differentiating

(12) with respect to t and dividing the common factor as in the derivation of (8), we obtain
βB(τ) = βC(t) and γB(τ) = γC(t). The left-hand side of (11) can be written as

xA

(
τ +

γB(τ)βB(τ)LAB

c

)
= xA

(
t +

γC(t)βC(t)LBC

c
+

γB(τ)βB(τ)LAB

c

)

= xA

(
t +

γC(t)βC(t)LAC

c

)
(14)

while the right-hand side of (11) can be written as follows:

xB(τ) + γB(τ)LAB = xC(t) + γC(t)LBC + γB(τ)LAB = xC(t) + γC(t)LAC. (15)

We used (12) to get (15). It is clear that (14) and (15) imply (13), and the proof is completed.
In fact, there is an easier way to prove the transitive property of rigid translations. We know

that if the motion of particle A and particle B is a rigid translation, they share an instantaneous
rest frame. Similarly, if the motion of particle B and particle C is a rigid translation, these
two particles share an instantaneous rest frame. The instantaneous rest frame with respect to
particle B is unique at every moment and we conclude that at every moment the three particles
share only one instantaneous rest frame. Furthermore, the distance between particle A and
particle C is the sum of LAB and LBC measured in the rest frame. Consequently the motion
of particle A and particle C is also a rigid translation.
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The transitive property of rigid translations allows an extended object to move rigidly.
We substitute B and L0 in (2) by a continuous parameter h,

xh

(
t − γA(t)βA(t)h

c

)
= xA(t) − γA(t)h. (16)

This equation describes a rigid translation of a one-dimensional rod parametrized by h. The
end point xA corresponds to xh with h = 0. We introduce an example of a rigid translation of
a rod in the next subsection.

2.3. Hyperbolic rigid motion

If particle A undergos a hyperbolic motion given by

xA(t) = c2

a

(√
1 +

a2t2

c2
− 1

)
(17)

with a constant a, which is the acceleration of particle A, then (16) becomes

xh

(
t − ath

c2

)
= xA(t) − γA(t)h. (18)

This can be solved easily and we get

xh(t) = c2

a




√(
1 − ah

c2

)2

+
a2t2

c2
− 1


 (19)

which can be rearranged as

xh(t) = c2

a
1−ah/c2




√
1 +

(
a

1 − ah/c2

)2
t2

c2
− 1


 − h. (20)

Comparing this equation with (17), we see that the particle parametrized by h is in a hyperbolic
motion with acceleration a

1−ah/c2 . From the finiteness of acceleration, we get a restriction for

h by h < c2/a. The velocity of each particle in the rod is obtained by differentiating (20) with
respect to t,

βh(t) =
(

a
1−ah/c2

)
t
c√

1 +
(

a
1−ah/c2

)2
t2

c2

. (21)

We notice, from the above two equations, that at t = 0 every particle is at rest and h is the
distance of the particle parametrized by h from particle A.

3. Rigid rotation in special relativity

3.1. Rigid rotation of three particles

Consider a system of two particles, particle A and particle O. Particle O is fixed at the origin
of an inertial frame O0 and particle A is rotating around this point on the x–y plane with a
radius a. In frame O0, the distance between the two particles is fixed to be a, and the motion is
rigid by the viewpoint of particle O. Under a boost transformation of a given relative velocity,
distances orthogonal to the velocity do not change. Therefore the distance between the two



4374 D Kim and S G Jo

particles observed in an instantaneous rest inertial frame with respect to particle A is also fixed
to be a. We call this kind of rigid motion a ‘rigid rotation’.

Now we introduce one more particle, particle B, rotating around particle O on the same
plane with a radius b. What concerns us is the following question. When particle A rotates
around particle O with a given pattern by θA(t), how should particle B rotate around particle
O so that the three particles move rigidly? We investigate an answer to this question now.

Using the freedom in choosing space axes, we let the x-axis pass through particle A at an
arbitrarily given time t0 in frame O0. The worldline of particle A, parametrized by t, is given
by 

 ct

a cos[θA(t) − θA(t0)]
a sin[θA(t) − θA(t0)]


 (22)

while the worldline of particle B is given by
 ct

b cos[θB(t) − θA(t0)]
b sin[θB(t) − θA(t0)]


 (23)

where we suppressed the z-coordinate for simplicity. The velocity of particle A at time t0 is
aθ̇A(t0)ŷ. Therefore, in an instantaneous rest frame FA(t0) with respect to particle A at time
t0, the worldline of particle A is described by
 γ 0 −γβ

0 1 0
−γβ 0 γ





 ct

a cos[θA(t) − θA(t0)]
a sin[θA(t) − θA(t0)]


 =


 γ ct − γβa sin[θA(t) − θA(t0)]

a cos[θA(t) − θA(t0)]
−γβct + γ a sin[θA(t) − θA(t0)]




(24)

while the worldline of particle B in frame FA(t0) is described by
 γ 0 −γβ

0 1 0
−γβ 0 γ





 ct

b cos[θB(t) − θA(t0)]
b sin[θB(t) − θA(t0)]


 =


 γ ct − γβb sin[θB(t) − θA(t0)]

b cos[θB(t) − θA(t0)]
−γβct + γ b sin[θB(t) − θA(t0)]




(25)

where

β = aθ̇A(t0)

c
(26)

γ = 1√
1 − β2

. (27)

When t = t0, particle A is instantaneously at rest in frame FA(t0) and its spacetime coordinates
are (γ ct0, a,−γβct0). We need to know the location of particle B at this instant in frame
FA(t0). For that matter we have to identify the event corresponding to this instant by equating
the time components of the two particles,

γ ct − γβb sin[θB(t) − θA(t0)] = γ ct0. (28)
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Using (26), the above equation can be written as

t − t0 = abθ̇A(t0)

c2
sin[θB(t) − θA(t0)]. (29)

This is the equation of simultaneity stating that the event of particle B at time t and the event of
particle A at time t0 occur at the same instant in frame FA(t0). Now, we impose the condition
of rigidity, by requiring that the distance between particle A and particle B is fixed at this
instant in frame FA(t0). This condition can be expressed as

{b cos[θB(t) − θA(t0)] − a}2 + {γβc(t0 − t)

+ γ b sin[θB(t) − θA(t0)]}2 = a2 + b2 − 2ab cos φAB (30)

where φAB is the angle formed by two radii a and b when the particles are at rest. Using (29),
the above equation can be simplified further,

c2

2ab
(t − t0)

2 + cos[θB(t) − θA(t0)] = cos φAB. (31)

These two equations, (29) and (31), serve as the main equations for a rigid rotation. Given
θA(t), θB(t) satisfying these equations is uniquely fixed and describes the rotation of particle
B so that particle B is always at the same distance form particle A in an instantaneous rest
frame of particle A. What about the distance of particle A from particle B observed in an
instantaneous rest frame with respect to particle B? We now move on to the question regarding
the reflexive property and the transitive property of rigid rotation.

3.2. Reflexive property of rigid rotation

We first note that the choice of t0 was arbitrary at the beginning. Once t0 is chosen, then the
two equations, (29) and (31), determine the values of t and θB(t). Let us rename t0 as tA and
the solution t as tB . Then, the two equations are written as

tB − tA = abθ̇A(tA)

c2
sin[θB(tB) − θA(tA)] (32)

c2

2ab
(tB − tA)2 + cos[θB(tB) − θA(tA)] = cos φAB. (33)

The reflexive property of rigid rotations will indicate that the following two equations are
implied by the above two equations with a suitable choice of t̃A:

t̃A − tB = baθ̇B(tB)

c2
sin[θA(t̃A) − θB(tB)] (34)

c2

2ba
(t̃A − tB)2 + cos[θA(t̃A) − θB(tB)] = cos φAB. (35)

These equations are derived by requiring that the event of particle B at time tB and the event
of particle A at time t̃A occur at the same instant in frame FB(tB), which is an instantaneous
rest frame with respect to particle B at time tB , and also that the distance between particle A

and particle B is fixed at this instant in the same inertial frame. Note that these two equations
are obtained from (32) and (33) by interchanging radii a and b, and subscripts A and B.

We will show that t̃A = tA solves (34) and (35). Before showing that, let us first prove
the following:

θ̇B(tB) = θ̇A(tA). (36)
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Differentiating (33) with respect to time tA and rearranging it, we obtain

dtB

dtA

{
c2

ab
(tB − tA) − θ̇B(tB) sin[θB(tB) − θA(tA)]

}

−
{

c2

ab
(tB − tA) − θ̇A(tA) sin[θB(tB) − θA(tA)]

}
= 0.

(37)

The second term on the left-hand side is zero by (32). Since dtB/dtA is not zero, we get

c2

ab
(tB − tA) − θ̇B(t) sin[θB(tB) − θA(tA)] = 0 (38)

which, with the help of (32), implies (36).
Substituting θ̇B(tB) and t̃A in (34) and (35) by θ̇A(tA) and tA respectively, (34) and (35)

become identical to (32) and (33). Therefore, the reflexive property holds in a rigid rotation.
Note that we can choose (32) and (36), instead of (32) and (33), as the conditions for a
rigid rotation. It is easy to show that (32) and (36) imply (33). Note also that if θ̇A(t)

is a monotonically increasing function of time, then θ̇B(t) should also be a monotonically
increasing function of time owing to (36). This is an important aspect which we will use later.

A special case is when two particles A and B are on the same line passing through the
centre. In this case, φAB is either 0 or π . For any given θA(t), θB(t) becomes

θB(tB) = θA(tA) + φAB (39)

with tB = tA. This solves the rigidity conditions, (32) and (36), and the corresponding motion
is a usual classical rigid motion with the same angular velocity.

3.3. Check of transitive property of rigid rotation

The question of the transitive property of rigid rotation is phrased as follows. Three particles
(particle A, particle B and particle D) are rotating around particle O on a plane. When the
system AB (composed of particle A, particle B and particle O) and the system BD (composed
of particle B, particle D and particle O) are separately under rigid rotations, then is the system
AD (composed of particle A, particle D and particle O) automatically under a rigid rotation?
The answer to this question in classical physics is yes as in the case of rigid translation.
However, in special relativity it turns out to be no as we show now.

We assume that particle A is slowly accelerating from the rest in such a way that θ̇A(t)

is a monotonically increasing function of time. The fact that two particles A and B are under
a rigid rotation implies the existence of tB and θB(t) (for given tA and θA(t)) satisfying the
following two equations:

θ̇B(tB) = θ̇A(tA) (40)

tB − tA = abθ̇A(tA)

c2
sin[θB(tB) − θA(tA)]. (41)

Here, note that θB(t) is uniquely fixed and θ̇B(t) is also a monotonically increasing function
of time. Similarly, the fact that two particles B and D are under a rigid rotation implies the
existence of tD and θD(t) (for given tB and θB(t)) satisfying the following two equations:

θ̇D(tD) = θ̇B(tB) (42)

tD − tB = bdθ̇B(tB)

c2
sin[θD(tD) − θB(tB)]. (43)
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Here again, note that θD(t) is uniquely fixed and θ̇D(t) is also a monotonically increasing
function of time. Now we have to ask if there is a solution t̃D satisfying the following two
equations:

θ̇D(t̃D) = θ̇A(tA) (44)

t̃D − tA = adθ̇A(tA)

c2
sin[θD(t̃D) − θA(tA)]. (45)

Equations (40) and (42) imply

θ̇D(tD) = θ̇A(tA). (46)

Because θ̇D(t) is a monotonically increasing function of time, the only solution of (44) is
t̃D = tD . Therefore, the transitive property of rigid rotation is guaranteed if (45) is satisfied
by t̃D = tD:

tD − tA = adθ̇A(tA)

c2
sin[θD(tD) − θA(tA)]. (47)

Summing (41) and (43) and using (40), we obtain

tD − tA = θ̇A(tA)

c2
{ab sin[θB(tB) − θA(tA)] + bd sin[θD(tD) − θB(tB)]}. (48)

Comparing (47) and (48), we observe that (47) is satisfied if

ab sin[θB(tB) − θA(tA)] + bd sin[θD(tD) − θB(tB)] = ad sin[θD(tD) − θA(tA)] (49)

is satisfied. This equation is not satisfied automatically, but serves as an additional condition
for the rotation to be rigid. If this equation is satisfied, then the system of four particles is
under a rigid rotation. We will analyse this equation in the next subsection.

3.4. Incompatibility of rigid rotation and special relativity

We observe from (49) that a one-dimensional rod can rotate rigidly about an axis intersecting
perpendicularly to the rod. This is the case where either all of the angular functions θA(t), θB(t),
and θD(t) are the same or one of them differs from the others by π . In this case, by equating
tA = tB = tC we see that (40)–(43) are all satisfied. Furthermore, (49) is also satisfied for any
values of radii a, b, d. Therefore, the motion of a one-dimensional rod rotating rigidly, with
a single angular function θ(t), about an axis intersecting perpendicularly to itself, is a rigid
rotation.

Now we consider a case when two of the three particles, particle A and particle B, are on
the same line with a �= b. These two particles are moving rigidly. Obviously, θA(tA) = θB(tB)

or θA(tA) = θB(tB) + π with tA = tB . We choose θA(tA) = θB(tB) for simplicity. This is the
case where particle A and particle B are on one side of the line with respect to particle O. We
assume particle D, not on the line but on the same plane orthogonal to the axis of rotation, is
rotating rigidly with particle B. Therefore, (40)–(43) are satisfied. In order to see if particle A

and particle D are rigid with respect to each other, (49) should be checked. This equation can
be written as

bd sin[θD(tD) − θA(tA)] = ad sin[θD(tD) − θA(tA)] (50)

which can never be satisfied for any value of d > 0. Note that if θD(tD) = θA(tA), then
tD = tA and particle D should be on the same line as the other two particles, which contradicts
our assumption. Therefore, the transitive property does not hold in general for a rigid rotation.
We now summarize our results.
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4. Conclusion

We have shown that a one-dimensional rod can move rigidly along the direction of the length.
The dimensionality can be extended in such a way that the rigidity is maintained. Distances
orthogonal to the direction of motion remain unchanged under a Lorenz transformation to
an instantaneous rest frame. Therefore, a motion of a three-dimensional object is a rigid
translation if the y-, z-coordinates of each constituent particle are fixed and for any pair of two
particles their x-coordinates satisfy (2).

Similarly, the dimensionality of a rigidly rotating object can be extended to two. Consider
a finite-sized plane through which the z-axis passes. If it rotates around the z-axis rigidly
in a classical sense, then its motion is a rigid rotation even in special relativity. Unlike the
translational case, extension to a three-dimensional object under a rigid rotation is impossible
because of the violation of the transitive property as shown in the previous section. We,
therefore, conclude that rigid motions are very much restricted in special relativity.

Acknowledgment

This research was supported by Kyungpook National University Research Team Fund, 2003.

References

[1] Einstien A 1905 Ann. Phys., Lpz. 17 891
[2] Born M 1909 Ann. Phys., Lpz. 30 1
[3] Herglotz G 1910 Ann. Phys., Lpz. 31 393
[4] Noether F 1910 Ann. Phys., Lpz. 31 919
[5] Hill E L 1946 Phys. Rev. 69 488
[6] Fokker A D 1949 Rev. Mod. Phys. 21 406
[7] Salzman G and Taub A H 1954 Phys. Rev. 95 1659
[8] Bona C 1983 Phys. Rev. D 27 1243
[9] Ehrenfest P 1909 Phys. Z. 10 918


